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ABSTRACT
Weak lensing by large-scale structure induces correlated ellipticities in the images of distant galaxies.

The two-point correlation is determined by the matter power spectrum along the line of sight. We use
the fully nonlinear evolution of the power spectrum to compute the predicted ellipticity correlation. We
present results for di†erent measures of the second moment for angular scales h ^ 1@È3¡ and for alterna-
tive normalizations of the power spectrum, in order to explore the best strategy for constraining the
cosmological parameters. Normalizing to observed cluster abundance, the rms amplitude of ellipticity
within a 15@ radius is almost independent of the cosmological model, with being the median^0.01z

s
0.6, z

sredshift of background galaxies.
Nonlinear e†ects in the evolution of the power spectrum signiÐcantly enhance the ellipticity for

h \ 10@Èfor h ^ 1@ the rms ellipticity is ^0.05, which is nearly twice as large as the linear prediction.
This enhancement means that the signal-to-noise ratio for the ellipticity is only weakly increasing with
angle for 2@ \ h \ 2¡, unlike the expectation from linear theory that the signal-to-noise ratio is strongly
peaked on degree scales. The scaling with cosmological parameters also changes because of nonlinear
e†ects. By measuring the correlations on small (nonlinear) and large (linear) angular scales, di†erent
cosmological parameters can be independently constrained to obtain a model-independent estimate of
both power spectrum amplitude and matter density Nonlinear e†ects also modify the probability)

m
.

distribution of the ellipticity. Using second-order perturbation theory, we Ðnd that over most of the
range of interest there are signiÐcant deviations from a normal distribution.
Subject heading : gravitational lensing

1. INTRODUCTION

Mapping the large-scale structure (LSS) of the universe is
one of the major goals of observational cosmology. Tradi-
tionally, this is performed using large surveys of galaxies,
either the projected two-dimensional distributions or the
three-dimensional surveys in redshift space. The main
shortcoming of the galaxy surveys is that they trace light,
while most of the matter appears to be dark. One therefore
needs to translate the galaxy power spectrum into the
matter power spectrum, and in order to do so one has to
make some assumptions on the nature of galaxy biasing.
Even in the simplest model this can be achieved only up to
an unknown biasing parameter b, which at present cannot
be theoretically estimated. While sophisticated N-body and
hydrodynamical simulations will eventually provide some
answers to this question, at present the biasing relation
between the light and matter remains rather poorly under-
stood and prevents one from drawing deÐnitive conclusions
on the amplitude and distribution of mass Ñuctuations in
the universe from galaxy survey data.

It is clearly important to seek ways to estimate the LSS
that are insensitive to biasing. Several observable tracers
have been proposed that probe directly the underlying mass
distribution : cosmic microwave background (CMB) aniso-
tropies, gravitational lensing, peculiar velocity Ñows, and
abundances of massive nonlinear objects. This paper
focuses on tracing the dark matter with gravitational
lensing, particularly the e†ects of weak lensing by LSS on
background galaxies. Weak lensing magniÐes and shears
the images of distant galaxies. The shear induces an ellip-

ticity in the image of an intrinsically circular galaxy. Back-
ground galaxies are of course not circular, but by averaging
over the observed ellipticities of a large number of galaxies,
the induced ellipticity can be measured and related to the
mass Ñuctuations along the line of sight and to the spatial
geometry of the universe. Ellipticities of distant background
galaxies averaged over several arcminute windows are sen-
sitive to the mass power spectrum on scales of 1È10 h~1
Mpc. For a given spectrum of mass Ñuctuations, it is sensi-
tive to the cosmological parameters and Thus, while)

m
)".

strong lensing that leads to multiple images probes non-
typical regions of the universe that contain massive halos,
weak lensing provides a di†erent and a more direct measure
of the mass Ñuctuations on large scales.

The Ðrst calculations of the shear signal due to weak
lensing that used modern models for the LSS power spec-
trum were those of et al.Blandford (1991), Miralda-Escude

and based on the pioneering work by(1991), Kaiser (1992),
Our work generalizes the results of theseGunn (1967).

authors to include the e†ects of nonlinear evolution of the
matter Ñuctuations for Ñat as well as open and "-dominated
cosmologies. has considered some aspectsVillumsen (1996)
of the linear calculation for open models. Very recently,

van Waerbeke, & MellierBernardeau, (1996), Kaiser (1997),
and have also made the linear calculationStebbins (1996)
for di†erent cosmologies. Our work extends the results of
the above authors by using the nonlinear power spectrum,
which makes a signiÐcant di†erence on small angular scales
of h \ 10@. For the nonlinear calculation we have used the
prescription of et al. as implemented byHamilton (1991)
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Mo, & White and & DoddsJain, (1995) Peacock (1996),
who provide accurate power spectra for di†erent models,
valid from the linear to the strongly nonlinear regime.

One can take two di†erent approaches in interpreting a
possible measurement of the shear signal. The Ðrst is to
work within the framework of a physical model for the dark
matter and background cosmology. Such a model is best
normalized to COBE, and then its small-scale predictions
can be compared to the observational constraints of, e.g.,
cluster or damped Lya system abundances, strong lensing
statistics or peculiar velocity Ñows, or, in our case, the shear
amplitude on a given angular scale. Another possibility,
which is less model dependent, is to compare the constraints
from di†erent tracers on the same physical scale. This way,
one can test the gravitational instability assumption that
both tracers probe the same underlying power spectrum
and place constraints on the cosmological parameters,
which scale di†erently with the tracers. At present, the CMB
data constrain the power spectrum only on very large
scales, where there are no available data from other tracers.
While several current CMB experiments are approaching
the scales probed by other tracers, cosmological parameters
such as baryon density, reionization epoch, and Hubble
constant become important and complicate the power spec-
trum reconstruction. The test mentioned above is possible
between the cluster abundances (or strong lensing statistics
of multiple images at large separation, both of which trace
essentially the same property) and the peculiar velocities.
Unfortunately, this method cannot give model-independent
constraints on cosmological parameters, because the two
tracers scale roughly equally with the matter density )

mEfstathiou, & Frenk(Peebles 1980 ; White, 1993).
A similar comparison can also be made between weak

lensing observations and the tracers discussed above. For
example, the shear amplitude on 15@ angular scale and rich
cluster abundance both probe power spectrum scales
around 8 h~1 Mpc, so the ratio of the two is roughly inde-
pendent of the shape of the power spectrum. One could
hope that using such comparisons would lead to an esti-
mate of the mean density of the universe, because the two
tracers scale di†erently with it. Unfortunately, as shown in
this paper this is not the case, so that this is not a promising
method of obtaining the mean density. Nevertheless, weak
lensing can also give important constraints on the power
spectrum both on smaller and larger scales, where other
tracers give less stringent constraints. On the smaller
angular scales, our calculations provide the enhancement in
the amplitude and the change in the scalings with andp8 )

mthat arise because of nonlinear evolution. Once reliable
detections of the shear at di†erent angular scales are avail-
able, these results can be used to constrain cosmological
parameters and the matter power spectrum. The principal
advantage of working with weak lensing is that no assump-
tions about the formation of observable structures need to
be made to connect the mass power spectrum to the
observed shear. The only unknown parameter is the redshift
distribution of source galaxies, and, in principle, this can
also be determined observationally.

In and the the formalism for the weak° 2 Appendix,
lensing calculation is presented following Seljak (1995,

who generalized the work by et al.1996), Blandford (1991),
and to a nonÑat uni-Miralda-Escude (1991), Kaiser (1992)

verse and nonlinear regime. The derivation presented here
is complementary to recent derivations by et al.Bernardeau

and The linear and nonlinear evolu-(1996) Kaiser (1997).
tion of the power spectrum is introduced in and the° 2.1,
resulting dependence on cosmological parameters for
power-law spectra is obtained in In realistic CDM-° 2.2. ° 3
like spectra are used to predict the rms shear. We provide
accurate power-law Ðts for the dependence of the shear on
the parameters h, and for di†erent cosmologicalz

s
, p8, )

mmodels. provides predictions of the shear forSection 3.1
COBE and cluster abundance normalized spectra for the
range of angular scales that are being probed by current
and forthcoming observations. The e†ects of non-
Gaussianity in the distribution of shear are considered in

where we compute the skewness of the distribution. This° 4,
is followed by a discussion and conclusions in ° 5.

2. THEORY OF WEAK LENSING

Gravitational lensing shears and magniÐes the images of
distant galaxies. The relation of the shear to perturbations
in the gravitational potential along the line of sight is devel-
oped in the Here we shall use the formalismAppendix.
presented in the to derive expressions for threeAppendix
di†erent measures of the second moment of the shear.

The observable mean ellipticity of galaxy images can be
simply deÐned in the approximation that the images are
ellipses with complex eccentricity v given by the axes lengths
b and a as follows : v\ (b2[ a2)/(b2] a2)e2it, where t is
the position angle of the major axis. In the limit of weak
distortions, the eccentricity is the same as ellipticity
vB (1 [ b/a)e2it. While individual galaxies have intrinsic
ellipticities that cannot be separated from gravitational
stretching, we have assumed here that averaging over
several galaxies leaves only the gravitational component,
which can, in principle, be measured. This mean ellipticity
SvT will be denoted as p and is deÐned by inequation (A6)
the We shall use p to denote its amplitude inAppendix.
what follows.

Information on the ellipticity is contained in the trace-
free part of the shear tensor, which is obtained by inte-
grating over all the deÑectors between us and the galaxy
and over the distribution of background galaxies W (s) (see
Appendix) :

'
ij
4

L dh
i

Lh
j

\ [2
P
0

s0
g(s)+

i
+
j
/(s)ds ,

g(s)\ r(s)
P
s

s0 r(s@ [ s)
r(s@)

W (s@)ds@ . (1)

Here / is the gravitational potential, and s is the radial
comoving distance, with being the horizon distance. Wes0also introduced the comoving angular distance r(s) deÐned
in The radial distribution of background gal-equation (A2).
axies is described with the window W (s@). If all the galaxies
are assumed to lie at the same redshift corresponding toz

s
,

then and g(s) takes the simple forms
S
, W (s@)\ dD(s@[ s

S
),

g(s) \ r(s)
r(s

S
[ s)

r(s
S
)

. (2)

There are several two-point statistics that can quantify
the induced ellipticites in galaxy images. The easiest to
obtain from observations is the rms ellipticity p6 (h) 4

where the overbar indicates the averageSp6 (h)p6 (h)*T1@2,
within a circular aperture of radius h. can beEquation (1)
used to express in terms of the power spectrum ofp6 (h)
density perturbations Following the derivationPd(k, s).
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presented in the we obtain for the ellipticityAppendix,
variance

p6 2(h) \ 9(2n)2)
m
2 H04 h~2

P
0

s0 A g
ra
B2

ds
P

Pd
A l
rh

, s
B
W 22(l)l dl

\ 36n2)
m
2
P
0

=
k dk

P
0

s0
a~2(s)Pd(k, s)g2(s)W 22[kr(s)h]ds ,

(3)

where with being the Bessel functionW2(x)\ 2J1(x)/x, J1(x)
of Ðrst order, and a is the expansion factor normalized to
unity today. A related quantity is the two-point polariza-
tion correlation function which isCpp(h)\ Sv(0)v*(h)T,
given by a similar expression to the one above, replacing the
term withW 22 J0 :

Cpp(h)\ 36n2)
m
2
P
0

=
k dk

]
P
0

s0
a~2(s)Pd(k, s)g2(s)J0[kr(s)h]ds . (4)

The Fourier transform of is the angular ellipticityCpp(h)
power spectrum P(l), which is often the optimal statistic to
use Here we use the quantity p2(l) \ 2nl2P(l),(Kaiser 1992).
which gives the contribution to the variance per log interval
in l and is given by

p2(l) \ 36n2)
m
2 l2
P
0

s0 g2(s)
r2(s)

a~2(s)Pd
C
k \ l

r(s)
, s
D
ds . (5)

This gives an estimate of correlations at an angle h \ 1/l.
No assumption on the matter power spectrum has been

made in the above expressions, and one can use them both
in the linear and nonlinear regime. The nonlinear spectrum
is, in general, a nonseparable function of wavenumber and
redshift, thus leading to a complicated coupling of the
dependences on the distance factors and the growth of per-
turbations. It also leads to a nonlinear dependence of the
predicted ellipticity correlations on the shape and ampli-
tude of the initial power spectrum. Thus, the amplitude of
the ellipticity correlations as well as their dependence on
cosmological parameters can change in the nonlinear
regime (i.e., on small angular scales). In the rest of the paper
we shall explore in detail the outcome of these e†ects of
nonlinear evolution.

2.1. Evolution of the Power Spectrum
If the gravitational potential changes in time, then its

power spectrum will depend on the radial distance s. In
linear theory this dependence is independent of k and can be
written in terms of the potential growth factor F(s) as

which gives for the density powerPÕ(k, s) \ F2(s)PÕ(k),
spectrum Pd(k, s)/a2(s) \ F2(s)Pd(k) \ [(D

`
/a)2](s)Pd(k),

where is the linear growth factor for the density. ThisD
`

(s)
can be approximated as et al.(Lahav 1991)

F(s) \ 2.5)
m

a~1(xf ] 1.5)
m

a~1 ] )
K
)~1 ,

x \ 1 ] )
m
(a~1[ 1) ] )"(a2 [ 1) ; f\

A)
m

ax
B0.6

. (6)

We have ignored the weak dependence of the logarith-)"mic growth factor. For a \ 1, this expression simpliÐes to

F(s \ 0) \ 2.5)
m
(1] )

m
0.6 ] 0.5)

m
[ )")~1 . (7)

For a Ñat model the gravitational potential does not)
m

\ 1
change in time in the linear regime and the region in which
g(s) peaks dominates the radial integral in equations (3), (4),
and Typically, this is at half the mean comoving distance(5).
to the galaxies, so if background galaxies lie at z\ 1, then
typical deÑectors lie at zB 0.3. In low models the gravi-)

mtational potential increases with s, di†erently for open and
for cosmological constant models. In the small z limit the
growth factor only depends on )

m
(Villumsen 1996).

On scales where *2(k, s) approaches or\ 4nk3Pd(k, s)
exceeds unity, nonlinear evolution of the power spectrum
becomes important. This is particularly important if one is
discussing models, where both cluster abundanceslow-)

mand peculiar velocity normalizations give higher density
normalization on scales of interest. In the quasilinear
regime the nonlinear spectrum can be computed using per-
turbation theory. An alternative semianalytic approach that
is accurate from the linear to the strongly nonlinear regime
(up to density contrasts D103) was proposed by Hamilton
et al. and further developed in subsequent work (e.g.,(1991)

& Padmanabhan & DoddsNityananda 1994 ; Peacock
et al. et al. This pre-1996 ; Jain 1995 ; Padmanabhan 1996).

scription involves mapping the nonlinear spectrum at a
wavenumber k to the linear spectrum at a unique wavenum-
ber which is given by a spherical collapse model.k

L
\ k,

This leads to a mapping of the form *2(k, s)\G[*
L
2(k

L
, s)],

where the dimensionless power *2 is deÐned above, and G is
a function that varies in a simple way for di†erent initial
spectra. The linear wavenumber is given byk

L
k
L
\

k[1 ] *2(k, s)]~1@3. The functional form of the mapping is
thus speciÐed by the function G, which has been calibrated
using high-resolution N-body simulations and is accurate
for a wide range of initial spectra.

For the predictions of the rms ellipticity in we shall° 3,
use the Ðtting formulae of et al. for andJain (1995) )

m
\ 1

of & Dodds for the open and " models toPeacock (1996)
describe the nonlinear power spectrum as a function of
wavenumber and redshift. We refer the reader to the above
references for details of the formulae and their implementa-
tion. While the formulae can di†er by a few tens of percent
for certain spectra, we Ðnd that our results for the ellipticity
are not a†ected by more than a few percent as the ellipticity
integrates the power spectrum over a range of wavenum-
bers and redshifts. In particular, the results for the CDM-
like models shown in Figures (see below) would be4È9
completely una†ected by our choice of Ðtting formulae.

2.2. Dependence on and for Power-L aw Spectraz
s
, p8, )

m
In the next section we shall use the nonlinear evolution of

CDM-like spectra to predict the rms ellipticity signal. Here
we consider the simpliÐed case of power-law initial spectra

to compute the scalings of and withPd(k) \ Akn Cpp(h) p6 2(h)
source redshift and the cosmological model parametersz

s
,

and The parameter is the rms Ñuctuation in thep8 )
m
. p8mass on scales of 8 h~1 Mpc, and it serves to normalize the

power spectrum. We use the linear evolution of the power
spectrum for which some of the scalings can be obtained
analytically. We also consider the qualitative modiÐcation
due to nonlinear evolution by using the stable clustering
regime, which gives the maximal e†ect of nonlinearities. The
length scales that contribute to the ellipticity are of order 8
h~1 Mpc for h ^ 15@. On these scales most realistic spectra
have a spectral index n ^ [1. On smaller angular scales,
the contribution to the ellipticity comes from higher wave-
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numbers, which sample a steeper part of the spectrum
(lower n). We therefore choose power-law spectra with
n \ [1 and n \ [2 for comparison with realistic spectra
on angular scales of interest.

For a power-law spectrum the k-integral for is analy-Cpptic and gives

Cpp(h) \ 36n2)
m
2 A

2n`1!(1 ] n/2)
h2`n!([n/2)

]
P
0

s0
dsg2(s)r(s)~2~nF2(s) , (8)

valid for The constant gives the nor-[2 \ n \[12. APp82malization of the power spectrum. Aside from the numerical
prefactors, the result for is the same and involves thep6 2(h)
same s integral.

For simplicity we shall take all the source galaxies to be
at the same redshiftÈthis is a good approximation, as the
result is insensitive to the source distribution for a given
median source redshift. The window function g(s) then
takes the form given in For r(s)\ s,equation (2). )

m
\ 1,

and the s integral is analytic as well, giving the following
power-law dependence :

Cpp , p6 2P p82 s
S
1~nh~2~n . (9)

Using the dependence of on thes \ 2H0~1(1 [ a1@2), Cppsource redshift can be obtained from the above equation.z
sFor and the result for is not analytic)

m
\ 1 )" [ 0, Cppexcept in the limit of z> 1, which is not of interest for

realistic situations. It is simple to understand qualitatively
the two physical e†ects that enter. (1) For a given redshift,
the distance s increases as decreases and increases.)

m
)"Therefore, there is more path length in the line of sight

integral, as is larger for a given The factor g(s) involvess
S

z
s
.

factors of the comoving angular diameter distance r(s),
and it also increases with decreasing andr(s

S
), r(s

S
[ s) ; )

mincreasing (2) The second factor is the linear growth)".
factor F(s). Growth of structure slows down at low redshift
in an open universe, and to a lesser extent in a "-dominated
universe. Therefore, at a given redshift the linear growth
factor, normalized to unity today, increases as decreases,)

mand for a given it decreases as increases.)
m

)"The e†ect of both the distance and growth factors is to
increase the contribution from the s integral in equation (8)
relative to the EinsteinÈde Sitter case. The net contribution
increases as decreases, and for a given as)

m
)

m
, )"increases. In the case of ", the distance factors dominate

over the linear growth factor, leading to a net increase over
the case with the same However, the enhancement due)

m
.

to the integral over s has to contend with the factor of )
m
2

outside the integral, which is considerably larger. The net
result is shown in for source galaxies at (top)Figure 1 z

s
\ 1

and (bottom). The y-axis shows times thez
s
\ 3 )

m
2

s-integrand of Thus, or is proportionalequation (8). Cpp p6 2
to the area under the curves shown, aside from numerical
factors that depend on the shape of the spectrum. The Ðgure
shows that the peak contribution for a reasonable choice of

comes from the range z^ 0.3È0.6.z
s The scaling of (the same as that of the square root ofp6 (h)

with is dependent both on and the shape of theCpp) )
m

z
spower spectrum. For the dependence is well Ðtted)" \ 0

by the power-law,

z
s
\ 1 : p6 (h) P p8)

m
0.85 . (10)

FIG. 1a

FIG. 1b

FIG. 1.ÈThe dependence of the integrand for on redshift. TheCppsource galaxies are assumed to be at (a) and (b) and thez
s
\ 1 z

s
\ 3,

matter power spectrum is a power law with slope n \ [2. The solid line is
for the heavy dashed line is for and the dotted)

m
\ 1, )

m
\ 0.3, )" \ 0,

line is for The Ðgure shows that compared to the)
m

\ 0.3, )" \ 0.7.
EinsteinÈde Sitter case, the amplitude decreases for the " model and is
lowest for the open model. The peak of the integrand for lies atz

s
\ 1

about z\ 0.3 for the case, and it shifts to higher z for the open and)
m

\ 1
" models. The thin dashed line is for an n \ [1 spectrum, with )

m
\ 0.3.

It peaks at lower z compared to the heavy dashed line, as the spectrum has
more small-scale power.

For and the above equation is quitez
s
^ 1 [2 [ n [ [1,

accurate. For the scaling depends on the spectrumz
s
\ 3

and can be approximated as follows :

z
s
\ 3 : p6 (h) P p8)

m
0.75 for n \ [1 ;

p6 (h) P p8)
m
0.6 for n \ [2 . (11)

The result for n \ [2 is valid, provided a low-k cuto† is
imposed to keep the integral Ðnite. As expected, at higher
source redshifts the enhancement due to the distance and
growth factors is larger and leads to a weaker depen-)

mdence. The same occurs as n decreases, as then there is more
power on large scales, and therefore more weight to the
high-z part of the integral. The results of equations and(10)

are valid for and are intended to cover(11) 0.2[)
m

[ 1,
the range of source redshift and spectra spanned by realistic
models.

A simple way to understand the dependence on )
mfollows from the fact that most of the lensing contribution

comes from about half the distance to the source galaxies.
Thus, the dependence of equations and can be)

m
(10) (11)

compared to that of at the redshift corresponding)
m

z1@2,to is well approximated by for ands
S
/2. )

m
(z1@2) )

m
0.8 z

s
\ 1

by for if n \ [2. For a shallower slope there is)
m
0.6 z

s
\ 3
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more power on small scales, which are closer for a given
angle. Hence, the results are closer to those of equations (10)
and for n \ [1 if one uses [it makes very little(11) s

S
/3

di†erence if one uses r(s) instead of s for this purpose].
Thus, as a Ðrst approximation the dependence can be)

mobtained by replacing the term in for the Ñat case, by)
m

Cppthe value of at one-third to one-half the distance to the)
msource galaxies.

The above scalings are derived using linear evolution of
the power spectrum. On smaller angular scales, nonlinear
evolution could play an important roleÈin the next section
we compute the change in the above scalings due to nonlin-
ear e†ects. It is complicated to estimate the angular scale
where nonlinear e†ects are important because each angle
involves the projection of a range of length scales at di†er-
ent redshifts. The answer will therefore depend on the slope
of the power spectrum. A rough estimate of the length scales
that make the dominant contribution to is given byp6 (h)

This Ðgure shows the transverse distance for aFigure 2.
given h at the redshifts estimated from Figures and as1a 1b
providing the dominant contribution to for source gal-p6
axies at For h \ 10@ this length scale is less than 5z

s
D 1È2.

h~1 Mpc, which is the correlation length of galaxies and
therefore a good demarcation of the nonlinear regime. We
may thus expect that the linear results for will be modiÐedp6
for h \ 10@.

An analytic estimate of the change in the above scalings
due to strongly nonlinear e†ects can be made using the
stable clustering solution. If one assumes that the lensing is
dominated by clustering on small scales (valid in the limit of
small angles and low source redshift), which stabilized at
high redshift, then the dimensionless power is a function of
the physical wavenumber times a3. This property extends to
the open models as well, because at high enough redshift,

It can then be shown that, if the linear spectrum)
m
(z)^ 1.

is normalized to the same today, then the enhancementp8factor of the nonlinear spectrum relative to the linear one is
proportional to F(s)~3. This follows from a reversed version
of the argument of & Dodds which wasPeacock (1996),
made for spectra normalized to the same initial value. A
particularly simple example is provided by the n \ [2
spectrum, for which the nonlinear slope and growth in the
EinsteinÈde Sitter case are the same as in the linear regime.

FIG. 2.ÈThe transverse distance at z\ 0.3 (bottom set of lines) and
z\ 0.5 (top lines) is shown as a function of the angle. The three curves at
each redshift are as in The two redshifts are chosen to span theFig. 1.
range of redshifts that provide the peak contribution for source galaxies at
z
s
D 1È2.

Hence, the nonlinear spectrum is given at all k by a constant
enhancement factor relative to the linear spectrum.

For one can approximate for0.3[)
m

[ 1 F(s) ^)
m
0.5

Therefore, the dependence in due to strong-z
s
^ 1. )

m
p6 2(h)

ly nonlinear evolution of the power spectrum is F(s)~3D
In this regime then, times the contribution)

m
~1.5. p6 2P )

m
0.5

of the distance factors, which further lowers the power of
This estimate is meant to provide an upper bound on)

m
.

the enhancement for open models due to the nonlinear con-
tribution. For realistic redshifts the contribution from such
small scales does not dominate, and the exact, numerical
estimates of the nonlinear spectrum must be integrated over
k and s. Still, it is clear that the dependence of weak)

mlensing amplitude will be signiÐcantly weaker than the
linear relation predicted from the scalings in the previous
subsection.

3. PREDICTIONS FOR RMS ELLIPTICITY FOR COLD DARK

MATTERÈLIKE SPECTRA

The detailed predictions for the rms ellipticity depend on
the shape and amplitude of the power spectrum, the dis-
tribution of source galaxies, and on the cosmological
parameters and In the following subsection we shall)

m
)".

consider two alternative normalizations of realistic cold
dark matter (CDM)Èlike power spectra. A useful, model-
independent description of the scalings can also be obtained
by Ðtting the dependence on the di†erent parameters to
power laws. This provides a reasonably accurate approx-
imation to the result and shows the qualitative behavior
more clearly.

provides such power-law Ðts to the scalings ofTable 1 p6
with h, and for EinsteinÈde Sitter, open, andz

s
, p8, )

m"-dominated cosmologies. The three speciÐc models we
have chosen are : EinsteinÈde Sitter open()

m
\ 1, )" \ 0),

and "-dominated()
m

\ 0.3, )" \ 0), ()
m

\ 0.3, )" \ 0.7).
The latter two models are representative of the class of open
and Ñat "-dominated cosmologies, as the results do not
change signiÐcantly for in the range The)

m
0.2\)

m
\ 0.5.

matter power spectrum used in the calculations is the non-

TABLE 1

SCALING OF POLARIZATION WITH h, AND COSMOLOGICALp6 (h) z
s
,

MODEL PARAMETERS

h z
s

p8 )
m

)"
h~0.37 . . . . . . 1 1 1 0
h~0.47 . . . . . . 1 1 0.3 0
h~0.42 . . . . . . 1 1 0.3 0.7

2@È5@ . . . . . . . . z
s
0.6h0.57 1 1 0

15@ . . . . . . . . . . z
s
0.56 1 1 0

2@È5@ . . . . . . . . z
s
0.66h65 1 0.3 0

15@ . . . . . . . . . . z
s
0.67 1 0.3 0

2@È5@ . . . . . . . . z
s
0.77h74 1 0.3 0.7

15@ . . . . . . . . . . z
s
0.74 1 0.3 0.7

2@È5@ . . . . . . . . 1 p81.25~1.20 1 0
2@È5@ . . . . . . . . 1 p81.38~1.34 0.3 0
2@È5@ . . . . . . . . 1 p81.29~1.27 0.3 0.7

2@È5@ . . . . . . . . 1 1 )
m
0.66~0.75 0

15@ . . . . . . . . . . 1 1 )
m
0.81 0

2@È5@ . . . . . . . . 1 1 )
m
0.60~0.65 0.7

15@ . . . . . . . . . . 1 1 )
m
0.68 0.7

2@È5@ . . . . . . . . 3 1 )
m
0.60~0.65 0

15@ . . . . . . . . . . 3 1 )
m
0.80 0
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linear !\ 0.25 CDM spectrum, where ! is the shape
parameter deÐned in et al. and roughly cor-Bardeen (1986)
responds to in CDM models. The scalings given in)

m
h

are not strongly sensitive to the shape of the powerTable 1
spectrum as shown in (see below) and discussed inFigure 7
the next subsection.

On scales h \ 10@ nonlinear evolution makes a signiÐcant
di†erence to all the scalings. shows the ratio ofFigure 3 p6 (h)
computed using the nonlinear/linear power spectrum for
the above three models. The ratio is signiÐcantly larger than
unity for h \ 10@ and reaches a factor of 2 for h D 1@. It is the
largest for the open model, where the nonlinear e†ects are
more important because of a slower linear growth of pertur-
bations.

Since the scalings di†er in the linear and nonlinear
regimes, gives power-law Ðts for three di†erentTable 1
angles, h \ 2@, 5@, 15@, to represent the nonlinear, weakly
nonlinear, and linear regimes, respectively. These give p6 (h)
to good accuracy over most of the range : 1@ \ h \ 30@ ;

The results can be0.5\ z
s
\ 3 ; 0.5\p8\ 2 ; 0.2\)

m
\ 1.

approximated by the following equations for the three
cosmological models given above. The angle h below is in
arcminutes, and where the scalings di†er on 2@ and 15@, the
latter scaling is given in parentheses. Since the scaling with

is nearly the same for the two values of h, we have used anz
sintermediate value in the following equations :

p6 [2@(15@)]\ 0.08h~0.37z
s
0.58p81.25(1)

] )
m
0.66(0.81) : )

m
\ 1.0

p6 [2@(15@)]\ 0.04h~0.47z
s
0.66p81.38(1)

] ()
m
/0.3)0.66(0.81) : )

m
\ 0.3

p6 [2@(15@)]\ 0.04h~0.42z
s
0.76p81.29(1)

] ()
m
/0.3)0.60(0.68) : )" \ 0.7 . (12)

These power-law Ðts can be used to obtain predictions for
the rms ellipticity for any desired choice of cosmological

FIG. 3.ÈThe ratio of computed using the nonlinear spectrum top6 (h)
that with the linear !\ 0.25 CDM spectrum is shown. The normalization
is and The solid line is for the dashed line is forp8\ 1, z

s
\ 1. )

m
\ 1,

and the dotted line is for The results show)
m

\ 0.3, )
m

\ 0.3, )" \ 0.7.
the signiÐcant enhancement in due to nonlinear evolution for h \ 10@.p6 (h)

parameters. For h \ 15@, the results are consistent with the
linear theory estimates for power-law spectra (with n
between [1 and [2) obtained in the previous section. The

curve is enhanced at small angles because of nonlinearp6 (h)
evolution. This enhancement causes the dependence on h to
be much closer to a power law over the range 1@ \ h \ 30@
than the linear prediction, which has much greater curva-
ture because of the curvature of the power spectrum. This
power law is steeper for the open and " models because of
stronger nonlinear evolution.

On h ^ 2@, the dependence on is signiÐcantly strongerp8than linear, especially for the open model. Nonlinear evolu-
tion also weakens the dependence on as anticipated in)

m
,

the previous section. Combining the scaling with andp8 )
m(relevant for comparison with other tracers), for h ^ 2@p6 (h)

scales as whereas on large scales of h [ 10@, itp81.25)m
0.66,

scales as Thus, on small scales measuresp8)
m
0.8. p6 (h) p8)

m
0.5

(the power of is even lower for h \ 2@ or)
m

)
m

\ 0.5),
whereas on large scales it measures p8)

m
0.8.

Using the above di†erences, a comparison of at smallp6 (h)
and large angular scales can constrain and separately.p8 )

mThus, nonlinear evolution, at the expense of a more
complex dependence on various parameters, can help break
the degeneracy between these parameters. To distinguish an
open from a Ñat "-model with the same value of one)

m
,

needs to use the di†erence in the scaling with as the otherz
s
,

scalings are very similar. The "-model predicts a faster
increase with because of a faster increase of the distancez

sfactors with redshift than the open case. Once it becomes
feasible to get estimates of the redshifts of source galaxies,
this di†erence can become a useful test of ", as it is nearly
independent of the shape and normalization of the power
spectrum.

3.1. Results for Cluster Abundance and COBE
Normalized Spectra

In choosing the most realistic power spectrum to
compute the polarization signal, the approach closest to
other tracers of the mass density Ðeld would be to use the
abundance of galaxy clusters or the peculiar velocity Ðeld of
galaxies to estimate the amplitude and to then use thep8,galaxy power spectrum to constrain the shape &(Peacock
Dodds The merit of this approach is1996 ; Peacock 1996).
that it agrees with the observational constraints on the
scales that are most relevant for weak lensing observations.
An alternative is to work with physical models for the dark
matter and cosmology that give the shape of the power
spectrum and use COBE normalization to Ðx the spectrum
on very large scales and thus its overall amplitude. The
merit of this approach is that for a given model both the
spectrum of perturbations and their evolution is fully deter-
mined. However, the Ðnal spectrum may or may not agree
with the present-day observations (which interpretation is
still somewhat uncertain). We shall present results using
both approaches.

The Ðrst of the two reliable tracers of mass Ñuctuations
on large scales is the abundance of large galaxy clusters
with a typical mass of 1015 which corresponds to aM

_
,

linear scale of about 8 h~1 Mpc. These objects are very rare
and according to the Press-Schechter formalism &(Press
Schechter their number density depends exponen-1974),
tially on the amplitude of mass Ñuctuation on the corre-
sponding linear scale. This allows an accurate estimate of
the amplitude, which typically gives p8\ 0.5È0.6 (White,
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Efstathiou, & Frenk & Liddle Cole,1993 ; Viana 1996 ; Eke,
& Frenk in an universe, almost1996 ; Pen 1997) )

m
\ 1

independent of the shape of the power spectrum. At present
this gives the best constraint on the linear density power
spectrum, with an error of about 10%È20%. The depen-
dence on is approximately and di†ers)

m
p8P)

m
~(0.5h0.6)

only slightly for open and spatially Ñat models. The scaling
with and is still somewhat uncertain, as it requires)

m
)"calibration with large N-body simulations.

Peculiar velocities are also tracers of underlying mass
Ñuctuations. In the linear regime there is a simple relation
between velocity and density Ðelds d(r) \(Peebles 1980) :

where The dependence on[(H0 f )~1$ Æ ¿(r), f ^)
m
0.6. )

mmass Ñuctuation amplitude from velocity data is p8P
which is almost the same as for the cluster abun-)

m
~0.6,

dance in a Ñat universe and only slightly less so in an open
universe. Comparison of the two constraints therefore
cannot signiÐcantly constrain Given a set of velocity)

m
.

measurements, one can reconstruct the particular com-
bination fd and estimate its power spectrum. Recent com-
parisons between Mark III Tully-Fisher catalogs and the
IRAS survey tend to favor et al.b

I
\)0.6/b

I
D 0.5 (Willick

Nusser, & Willick where is the linear1997 ; Davis, 1996), b
Ibias parameter for IRAS galaxies. This combined with

leads to smaller than the valuep8,ID 0.7 p8)0.6 \ 0.35,
derived from the cluster abundance data. This would there-
fore reduce the weak lensing predictions presented in this
paper. However, analysis of Mark III catalog with
POTENT gives a higher value of & Dekelp8)0.6 (Kolatt

so it seems prudent to adopt the cluster abundance1997),
normalization until the discrepancy in the velocity data is
resolved.

Based on the above discussion, a useful functional form
for the density power spectrum is given by a CDM-type
transfer function with two free parameters, the amplitude

and the shape parameter !B 0.25p8B 0.6)
m
~0.6 (Peacock

& Dodds This is the model that will be adopted in1996).
computing predictions of ellipticity polarizations for cluster
abundance normalization. We shall use the Ðtting formulae
in equations (47)È(49) of & Liddle to computeViana (1996)

as a function of normalization is very close top8 )
m
Ètheir

the results of Efstathiou, & Frenk andWhite, (1993) Pen
though a bit higher than that of et al.(1997), Eke (1996).

Before proceeding with the results for we considerp6 (h),
the contribution to the integral from di†erent ranges in k.

compares the contribution per logarithmic intervalFigure 4
in wavenumber to and p2(l) at h \ 15@, with thep6 2 z

s
\ 1

logarithmic contribution to which is also an integral ofp82,the power spectrum over k with a real space top-hat Ðlter.
All the distributions are normalized so that they peak at
unity. One can see that the distribution of is broader andp6 2
that of p2(l) narrower than the corresponding distribu-p82tion, but, in general, they sample very much the same scales.
Thus, the optimal statistic to use in order to compare the
normalization with other tracers is p2(l), at 1/l,p8 p6 2(h)
h ^ 15@. The comparison can then be made nearly indepen-
dent of the shape of the power spectrum.

We need to choose a redshift distribution for the source
galaxies in order to compute At present this is spectro-p6 (h).
scopically known only for galaxies with magnitude in I
below 23 et al. et al. which have(Lilly 1996 ; Cowie 1996),
median redshift zD 0.5, while typical lensing observations
reach several magnitudes deeper (e.g., et al.Mould 1994).
Hubble Space Telescope observations of Abell 2218 coupled

FIG. 4.ÈThe logarithmic contribution from wavenumbers k to Cpp(dashed line) and p2(1/h) (dot-dashed line) at h \ 15@, z\ 1 is shown. It is
compared to that of (solid line), the variance in density on the 8h~1 Mpcp82scale. The dependence of is nearly the same as that of up to k ^ 0.5 hp6 2 CppMpc~1, after which it remains positive, while goes negative.Cpp

with cluster mass reconstruction indicate that the median
redshift increases from zD 0.5 at R\ 22 to zD 1 at R\ 25

et al. There could, however, be a population(Kneib 1996).
even at redshift beyond 1, as indicated by the detection of
the shear around a z\ 0.8 cluster & Kaiser(Luppino 1997).
Most of the results we present are for but they can bez

s
\ 1,

adapted to any desired using the scalings of Forz
s

Table 1.
simplicity, we have assumed that all the galaxies are at the
same distance. This is the best possible case in the sense that
it makes the distributions in k space more narrow than for
more realistic cases. Fortunately, the di†erence between our
results and those using a di†erent, more realistic distribu-
tion of source galaxies with the same median redshift is
usually very small (Kaiser 1992 ; Villumsen 1996).

shows the dependence of on h for the threeFigure 5 p6 (h)
cosmological models, all with shape parameter !\ 0.25,
except for the COBE-normalized model. The thick)

m
\ 1

solid line is for the dashed line is for and)
m

\ 1, )
m

\ 0.3,
the dotted line is for The normalization)

m
\ 0.3, )" \ 0.7.

chosen is (a) (b) cluster abundance, and (c) COBE.p8\ 1,
For the open and Ñat COBE models, we have used )

m
\ 0.4

so that the value of h and are reasonable. The threep8COBE models are the following : Ñat, tilted with)
m

\ 1,
n \ 0.8, h \ 0.5, open with h \ 0.65,p8\ 0.72 ; )

m
\ 0.4,

Ñat, "-model with h \ 0.65,p8\ 0.64 ; )
m

\ 0.4, p8\ 1.07
& White Since the "-model chosen has a high(Bunn 1997).

it turns out to have nearly the same prediction asp8, p6 (h)
the tilted model.)

m
\ 1

The thin solid line is computed using the linear spectrum
for the model. As expected from the results of)

m
\ 1 Figure

it is only for h [ 10@ that the linear and nonlinear curves3,
start to coincide. For cluster abundance normalization, the
amplitude of ellipticity correlations very weakly depends on
the mean density for a reasonable range of The)

m
.

enhancement for low models from the growth and dis-)
mtance factors discussed in nearly cancels out the° 2 )

m
0.4

dependence one might have expected from the term outside



No. 2, 1997 WEAK LENSING MODEL PREDICTIONS 567

FIG. 5.ÈThe dependence of on h is shown for three cosmological models, with and a !\ 0.25 CDM spectrum. The heavy solid line is forp6 z
s
\ 1 )

m
\ 1,

the dashed line is for and the dotted line is for The thin solid line is for the linear spectrum with The three panels show)
m

\ 0.3, )
m

\ 0.3, )" \ 0.7. )
m

\ 1.
three alternative normalizations of the power spectrum. In the case of COBE normalization, has been used for the open and " models (see text for)

m
\ 0.4

details of the other parameters for the COBE models).

the integral in Therefore, one has to makeequation (3).
subtler comparisons of the signal at small and large h to
break the degeneracy between and This was dis-p8 )

m
.

cussed above following It indicates that com-equation (12).
paring weak lensing measurements over di†erent scales can
more powerfully constrain than comparing the weak)

mlensing amplitude with other tracers. For COBE normal-
ization on the other hand, a detection of the correlated
ellipticity with reasonable error bars can immediately con-
strain the cosmological model in question, but of course
there might still remain several di†erent models that equally
well Ðt the data.

The e†ect of choice of statistic, shape of the power spec-
trum, and the redshift of source galaxies is shown in Figures

and shows p(1/h) for the three cosmological6 7. Figure 6
models with cluster abundance and COBE normalization,
as in The curves for p Ñatten at small h more thanFigure 5.
the curves. This is to be expected because integrates overp6 p6
all scales larger than rh (where r is the typical distance) and
so can only increase toward small scales. Because there is
little power on very small scales, it eventually saturates (this
typically happens on subarcminute scales ; see Keeton,
Kochanek, & Seljak The Fourier space quantity p2(l),1997).
on the other hand, receives contributions only from scales

FIG. 6.ÈThe square root of the dimensionless ellipticity power spectrum p(1/h) is shown for the same three cosmological models as in The left panelFig. 5.
uses cluster abundance normalized spectra, while the right panel uses COBE normalized spectra. The thin solid line shows p(1/h) for the model)

m
\ 1

computed using the linear power spectrum.
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FIG. 7.ÈThe e†ect of the shape of the power spectrum on is shownp6 (h)
by comparing the !\ 0.25 CDM spectrum (solid lines) with the !\ 0.5
CDM spectrum (dot-dashed lines). The top set of curves is for andz

s
\ 2,

the bottom set is for The !\ 0.5 spectrum has more small-scalez
s
\ 1.

power and therefore predicts larger values at small h.p6

smaller than r/l and therefore decreases on very small scales
for realistic power spectra. The shape of the curve isCppvery similar to that of and for is well approx-p6 2, h Z 2@, Cppimated by compares for the !\ 0.50.7p6 2. Figure 7 p6 (h)
CDM spectrum to the !\ 0.25 spectrum used in the rest of
the Ðgures. The top and bottom set of curves are for z

s
\ 2

and 1, respectively. Since the !\ 0.5 spectrum has more
power at small scales, it leads to a larger at small h. Thep6
curves cross around h \ 10@, but the di†erence is not large
for h [ 2@. shows the variation of with forFigure 8 p6 (h) z

sh \ 15@ and h \ 2@. The models shown are the same as in the

FIG. 8.ÈThe e†ect of increasing source redshift on is shown forz
s

p6 (h)
h \ 2@ (top three lines) and h \ 15@ (bottom lines). The three models shown
are the same as in and use cluster abundance normalized spectra.Fig. 5
The " models, shown by the dotted lines, predict the fastest growth with z

s
,

as discussed in the text.

cluster abundance normalized panel of As shownFigure 5.
in p increases with fastest for the "-models.Table 1, z

s
4. NONLINEAR EFFECTS ON THE DISTRIBUTION OF

ELLIPTICITY

So far we have only discussed the importance of nonlin-
ear e†ects on the second-order statistic, which, as we have
seen, increases the signal above the values predicted by
linear calculations. Nonlinear evolution, however, also
changes the distribution function of correlated ellipticity or
magniÐcation. In particular, the tails of distribution grow
and become asymmetric, reÑecting the nonlinear growth of
perturbations into small and overdense objects. This leads
to a distribution of magniÐcation that is skewed toward
positive values. Such skewness is of interest for determining
cosmological parameters by itself et al.(Bernardeau 1996),
but also a†ects the inference of cosmological parameters
from the measurements of two-point statistics. If the dis-
tribution of polarization at a given angular scale h can be
assumed to be normally distributed, then the usual results
from Gaussian statistics apply. For example, a single mea-
surement of polarization amplitude within a circular aper-
ture has a Rayleigh probability distribution s2(2), which has
an exponentially suppressed tail and from which the limits
on cosmological parameters can be derived analytically.
Several independent measurements can be easily combined,
and only a few observations suffice to obtain strong limits
on cosmological parameters. If, on the other hand, the dis-
tribution is strongly non-Gaussian, so that the tails of dis-
tribution are important, then one cannot use these simple
arguments to derive the limits, and a larger set of measure-
ments (a ““ fair sample ÏÏ) is needed to sample sufficiently the
tails so that the variance converges to a true value. At the
same time, higher order statistics become easier to measure
and can provide further tests of cosmological parameters.

For measurements of density perturbations a simple cri-
terion of where the nonlinear e†ects become important is

so for scales above RD 10 h~1 Mpc the universe isp
R

D 1,
in the linear regime, and Gaussian statistic can be used. For
smaller scales nonlinear e†ects become important, which
leads to deviations from a normal distribution even if the
initial Ðeld was Gaussian. For projected quantities such as
shear and magniÐcation the answer is not so simple. The
projection integrates over all the scales, so there will always
be contribution from very small and thus very nonlinear
scales. On the other hand, projection will reduce the devi-
ations from a Gaussian distribution because of the central
limit theorem: if we sum over a sufficiently large number of
deÑectors, then the Ðnal distribution will be a Gaussian
regardless of the probability distribution of individual
deÑectors. We thus expect that the nonlinear e†ects will be
more important for small angles and for bright (nearby)
background galaxies.

To obtain a more quantitative answer, we calculated the
skewness of local convergence usingS \Si6 3T/Si6 2T3@2
second-order perturbation theory. Skewness for local con-
vergence does not vanish as in the case of ellipticity

et al. The second moments of and(Bernardeau 1996). 2i6 p6
are the same, and so one may expect the higher order
moments of convergence to be indicative of the nonlinear
e†ects on the ellipticity distribution as well. Note that the
quantity S di†ers from the quantity useds3\ Si6 3T/Si6 2T2
by et al. The latter is deÐned so that it isBernardeau (1996).
independent of the amplitude of power spectrum in the
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second-order perturbation theory, while S is a more useful
variable to quantify the deviations from the Gaussianity. As
discussed in the second-order perturbationAppendix,
theory should be approximately valid in the regime of inter-
est here, between 1@ to 1¡. Second-order perturbation theory
accurately estimates the skewness over a much wider range
of scales than it does the variance. Only on the smallest
scales does it underestimate the skewness, but typically not
more than a factor of 2, as shown by N-body simulations

Bouchet, & Hernquist Using the expres-(Colombi, 1996).
sions derived in the (see also et al.Appendix Bernardeau

we can compute the value of S for any of the models1996)
discussed in this paper. presents the distribution ofFigure 9
S as a function of h for three di†erent redshifts in three
di†erent models : Ñat model with and curvaturep8\ 0.6,
and cosmological constant models, both with andp8\ 1
)\ 0.3 (this is very close to the cluster abundance
normalization). In all the models we use !\ 0.25.

For simplicity we will choose S \ 0.2 as the value at
which the distribution becomes non-Gaussian. For back-
ground galaxies at we Ðnd that the distribution isz

s
\ 0.5

non-Gaussian even at 4¡ in the Ñat model, where the polar-
ization signal is only 0.25%. At and the corre-z

s
\ 1 z

s
\ 2

sponding values are 1¡ and For curvature and0¡.5.
cosmological constantÈdominated models the non-
Gaussian e†ects are even more important because of higher
normalization at 8h~1 Mpc, although the e†ect is o†set by
the longer radial distance to a given redshift. The conclu-
sion is that in most of the observationally interesting regime
the non-Gaussian e†ects will be quite important. While this
complicates the issue of how large a fair sample should be, it
also implies that skewness will be fairly easy to measure
with a reasonably small sample. Because depends sensiti-s3

FIG. 9.ÈSkewness as a function of h for the ÑatS \ Si6 3T/Si6 2T3@2
model (solid lines), open model (dashed lines), and cosmological constant
model (dotted lines). The top set of curves is for the middle set isz

s
\ 0.5,

for and the bottom set is for Over most of the regime ofz
s
\ 1, z

s
\ 2.

interest the nonlinear e†ects are important. Note that for theh [ 15@,
perturbation theory underestimates the skewness of the density (Colombi
et al. so that on arcminute scales S could be nearly a factor of 21996),
larger than shown in this Ðgure.

vely on but not on the amplitude of the power spectrum)
m et al. this test may become a promising(Bernardeau 1996),

way to determine )
m
.

The analytical approach presented above provides only a
limited view of the properties of ellipticity distribution. For
example, such an analysis cannot answer whether skewness
is produced by a few outlying points generated by rare
clusters, in which case a rather large sample would be
needed to sample these properly. A quantitative estimate of
what constitutes a fair sample for measuring the variance
therefore requires knowledge of at least the fourth moment.
Such estimates of a fair sample for measuring the second
and third moment can be made more directly by examining
the distribution of correlated ellipticities in N-body simula-
tions Cen, & Ostriker(Wambsganss, 1997).

5. DISCUSSION AND CONCLUSIONS

Weak gravitational lensing has several advantages over
other probes of LSS. It is directly sensitive to the underlying
mass distribution and is therefore independent of biasing,
which has plagued many of the cosmological tests based on
the distribution of galaxies. While peculiar velocities, in
principle, similarly probe the dark matter distribution
directly, in practice they su†er because of large obser-
vational errors and various biases associated with these.
This is the main reason why higher order statistics of veloc-
ity Ðelds have not provided strong constraints on cosmo-
logical models.

Gravitational lensing could provide a much cleaner way
of performing power spectrum and higher order statistical
tests, provided that one can overcome observational diffi-
culties and reach the 1% level of polarization, quite feasible
with the new generation of composite CCD cameras. For a
Ðlled survey with an area and N measured galaxies, theh02noise variance in is given by where 0.4 isp6 2(h) D(0.4)2h0/Nh,
the typical intrinsic shear for a single galaxy. Although one
has to average over a sufficient number of galaxies to reach
this level of signal, this is not a severe limitation for suffi-
ciently deep exposures with several hundred thousand gal-
axies per square degree, so on degree scales the signal-to-
noise ratio is of the order of 100 and(Kaiser 1997 ; Fig. 10)
in fact sampling variance (Ðnite number of independent
areas of size h2) is more important than noise on large
angles. On smaller scales the noise increases (proportional
to h~1), but the signal also increases nearly as rapidly, so
that the overall signal-to-noise ratio remains approximately
Ñat down to 2@ scales in open and cosmological constant
models and slowly decreases in Ñat models Based(Fig. 10).
on this it appears there should be sufficient power present in
a survey of this size to measure the signal even on arcminute
scales with a high statistical accuracy, so a comparison
between small and large scales to constrain would)

mindeed be feasible, provided that the systematic e†ects can
be kept under control.

The other limitation at present is that the redshift dis-
tribution of background galaxies is unknown beyond
I\ 23 et al. et al. New obser-(Lilly 1996 ; Cowie 1996).
vations with Keck will be able to extend this spectro-
scopically up to I\ 25 (e.g., et al. and evenLowenthal 1997)
beyond, if spectra of magniÐed arcs are measured. In addi-
tion, weak lensing on high-redshift clusters can be used to
constrain the redshift distribution of faint galaxies without
measuring their redshifts, although at present there appears
to be some controversy over whether the faintest galaxies
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FIG. 10.ÈThe quantity is shown for the three models of(h/5@)p6 2(h)105
This provides an estimate of the signal-to-noise ratio in the mea-Fig. 5.

surement of in a 1 square degree Ðeld with 2 ] 105 galaxies, as obtainedp6 2
from a typical observation with a limiting magnitude I\ 26. Nonlinear
evolution causes the curves to be much less sensitive to h in the range
2@ \ h \ 2¡ compared to the linear prediction, which shows a signiÐcant
peak around h \ 1¡. The linear curves for the three models are shown by
the thin lines.

are predominantly around or below z\ 1 et al.(Kneib
or above that & Kaiser Finally, the1996) (Luppino 1997).

best hope to constrain their redshift distribution may lie in
the photometric redshifts technique et al.(Connolly 1995 ;

Lin, & Yee This would allow one to performSawicki, 1997).
such precision tests as the growth of power spectrum with
redshift, needed to estimate the value of For example,)".
based on Hubble Deep Field (HDF) observations, Sawicki
et al. Ðnd that the redshift distribution of I\ 27(1997)
galaxies has a large contribution of (predominantly blue)
galaxies between redshifts 2È3, while at I\ 25.5 most of the
galaxies are below z\ 1. In both cases the weak lensing
signal-to-noise ratio with these limiting magnitudes would
be comparable to the one in thus, in principle, byFigure 10 ;
comparing the signals in the two magnitude bins, it would
be straightforward to deduce the value of The caveat is)".
that the faintest galaxies in HDF appear to be very irregular
and small, so it is not clear whether weak lensing analysis
from the ground could be performed on these objects. While
more investigation is needed along these lines, there appears
to be a real promise of measuring cosmological parameters
with future weak lensing observations.

We have analyzed theoretical predictions for weak
lensing ellipticity correlations over a broad range of angles
and for a variety of cosmological models. Our principal
conclusions are the following :

1. The amplitude of the rms ellipticity varies between
4%-6% on arcminute scales to 0.5%È1% on degree scales

for background galaxies at and grows as Inz
s
\ 1 z

s
0.6~0.8.

this range the amplitude only weakly depends on the value
of cosmological parameters if cluster abundance (or velocity
Ñows) normalization is adopted. A single measurement of
weak lensing amplitude on h ^ 15@ will provide a determi-
nation of which can be compared with thep8)

m
0.7~0.8,

cluster abundance or velocity Ñow predictions. Because
these tracers all scale similarly with this will not provide)

m
,

an independent determination of for which a more com-)
m
,

plicated analysis will be needed.
2. Nonlinear e†ects are important for second-order sta-

tistics on scales below 10@ and enhance the signal expected
from linear theory. This enhancement can be up to a factor
of 2 on arcminute scales. From this it follows that the
signal-to-noise ratio does not decrease as rapidly on small
scales as expected from linear theory and is, in fact, approx-
imately Ñat in certain models from arcminute to degree
scales (see Therefore, measurements over thisFig. 10).
whole angular range should be pursued, especially since
they provide complementary information. The interpreta-
tion of cosmological models is more cleanly addressed on
large angular scales, where nonlinear e†ects are negligible,
and the distribution function is primordial. Small angular
scales can provide insight on the nonlinear evolution of
perturbations. If our current understanding of the latter is
correct, then combining measurements on large and small
angular scales will help break the degeneracy between the
cosmological parameters, because of di†erent scalings in the
linear and nonlinear regimes. The ellipticity on small angles
measures and on large angles it measuresp8 )

m
0.5, p8)

m
0.8,

while the variation with can constrain Thus, toz
s

)".
obtain model-independent measurements of the cosmo-
logical parameters, it is necessary to measure the signal over
a range of angles and source redshifts.

3. Nonlinear e†ects on the distribution of ellipticity are
signiÐcant on scales below 1¡ and imply that Gaussian sta-
tistics cannot be applied to the data. This means that a
larger sample will be required to measure second-order sta-
tistics than expected from a Gaussian distribution. Con-
versely, skewness and other higher moments will be easy to
measure and may provide a strong test of cosmological
parameters independent of the tests above.

In conclusion, weak lensing has the promise to become
the next testing ground for cosmological theories. The
expected signal-to-noise ratio is above unity over a large
range of angles and limiting magnitudes. This should allow
one to test sensitively the spectrum of density perturbations
and its evolution in time, in both the linear and the nonlin-
ear regimes.

B. J. is very grateful to Jens Villumsen for initiating his
interest in weak lensing, and to him and Richhild Moessner
for useful discussions. We thank Bernard Fort, Nick Kaiser,
Chris Kochanek, Yannick Mellier, Stella Seitz, Simon
White, and especially Peter Schneider for stimulating dis-
cussions. We thank the referee for suggestions that helped
improve the paper and led to the addition of Figure 8.

APPENDIX

In this Appendix we present a general description of lensing in a weakly perturbed universe. The derivation presented here
follows Seljak and di†ers from recent derivations in et al. and in that it employs a(1995, 1996) Bernardeau (1996) Kaiser (1997)
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global description of photon trajectories. The geometrical interpretation requires only knowledge of spherical trigonometry,
and it is thus particularly simple to derive the general weak lensing expressions. Moreover, it can easily be generalized beyond
weak lensing approximation or small deÑection angles.

The framework is perturbed Robertson-Walker with small-amplitude metric Ñuctuations. We will only consider scalar
perturbations here, in which case the metric in the longitudinal gauge can be written using conformal time q and comoving
coordinates xi as follows :

ds2\ a2(q)[[(1 ] 2/)dq2] (1 [ 2/)c
ij
dxi dxj] . (A1)

Here a(q) is the scale factor expressed in terms of conformal time. We will adopt units such that c\ 1. We set the two scalar
potentials to be equal, which is a good approximation in the matter-dominated epoch. The space part of the background
metric can be written as follows :

c
ij
dxi dxj \ ds2] r2(dh2] sin2 h d/2) , r(s) \ sin

K
s 4

7K~1@2 sin K1@2s ,
s ,
([K)~1@2 sinh ([K)1@2s ,

K [ 0 ,
K \ 0 ,
K \ 0 ,

(A2)

where K is the curvature term, which can be expressed using the present density parameter ) (only the present-day density
parameter will be used in this paper ; hence, we may drop the subscript 0) and the present Hubble parameter asH0The relation between the radial distance s and the redshift z can be obtained from the FriedmannK \ ()[ 1)H02 \ [)

K
H02.equation, where a \ (1 ] z)~1 is the expansion factor, and the densities of matter,da/ds \H0()m

a] )" a4] )
K

a2)1@2,
cosmological constant and curvature are expressed in terms of the critical density. The density parameter ) can have
contributions from mass density or vacuum energy density The advantage of using the conformal time)

m
)", )\)

m
] )".

q is that the metric becomes conformally Euclidean (K \ 0), three-sphere (K [ 0), or three-hyperboloid (K \ 0) and leads to a
simple geometrical description of light propagation.

In an unperturbed universe a photon emitted from a source toward the observer will travel along a null geodesic in the
radial direction with a radial position given by Adding a perturbation changes the photon trajectory. The changes \ q0[ q.
in photon direction is governed by the space part of the geodesic equation, which applied to the metric gives(eq. [A1])

dn
dl

\ 2n Â (n Â $/)4 [2$
M

/ , (A3)

where the symbol denotes the transverse derivative of potential. Null geodesics obey ds2\ 0, from which follows the$
M

/
relation ds \ (1 [ 2/)dl. Here / can be interpreted as the Newtonian potential, since on scales smaller than the horizon it
obeys the cosmological Poisson equation. It can be viewed as providing a force deÑecting the photons and a†ecting their
travel time while they propagate through the unperturbed spacetime. is a generalization of EinsteinÏs deÑectionEquation (A3)
angle formula and includes the well-known factor of 2 di†erence compared to Newtonian gravity. Even when metric
perturbations are present, one can continue to parameterize the geodesic with the unperturbed comoving radial distance s.
The deÑection angle at a given position s can be calculated using a locally Ñat coordinate system, which allows a plane wave
expansion for the potential /, provided that the longest correlation length is small compared to the curvature length (this
condition is well satisÐed for the power spectrum in our universe). The e†ect of the deÑection angle on the photon transverse
position must, however, include the curvature e†ects. In practice, this means that one only needs to know how to solve
triangles using the spherical, Euclidean, or hyperboloid trigonometry Because the only observable photon direction(Fig. 11).
is that at the observerÏs position we will propagate photons relative to their Ðnal direction (i.e., backward in time). We will also
adopt a small deÑection angle approximation, because one does not expect large deÑection angles due to the lensing, but the
expressions can be generalized to remove this restriction. In this approximation the transverse derivatives in equation (A3)
can be approximated with the transverse derivatives with respect to the observed direction of the photon or with respect to
any other Ðducial direction that has a small angular separation with the photon (for example, the unperturbed direction to the
source). In this plane approximation the observed photon direction n can be described with a two-dimensional angle h with
respect to the Ðducial direction, n \ (h1, h2, 1 [ o h o2/2 B 1).

Suppose a photon is observed at an angle h relative to some Ðducial position. As it propagates through the universe, the
photon is additionally deÑected according to (see This leads to the transverse photon excursionequation (A3) Fig. 11). x

M
(s)

relative to the unperturbed line. From Euclidean, spherical, or hyperboloid trigonometry one Ðnds that an individual
deÑection by da at s@ leads to an excursion at s given by The total excursion is given by an integral overdx

M
\ dar(s[ s@).

FIG. 11.ÈPhoton propagation relative to the source-observer line : a photon is emitted at the source and observed at the observerÏs position in the
direction h relative to the unperturbed source-observer direction (which is curved on an Euclidean plane because of background curvature). A deÑection at s@
by leads to the transverse excursion at s given byda \[2$

M
/ ds dx

M
(s) \ r(s [ s@)da.
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individual deÑections,

x
M
(s) \ [2

P
0

s
$

M
/(s@)r(s [ s@)ds@] hr(s) . (A4)

Because of gravitational lensing the ““ true ÏÏ surface brightness (i.e., the surface brightness one would see in the absence of
any lensing) at position is mapped into the observed one, , where dh is the angular deÑection of as

S
Iobs(h) \ Itrue(h ] dh)

photon caused by intervening mass, which follows from equation (A4) :

dh \ [2
r(s

S
)
P
0

sS
r(s

S
[ s)$

M
/(s)ds . (A5)

While the deÑection dh is not directly observable, its gradient is, through the stretching and magniÐcation of distant galaxies.
This is described by the two-dimensional shear tensor deÐned in To compute it we expand the potential inequation (1).

across two neighboring rays separated at the observer by dh using the unperturbed separation dx \ r(s)dh. Thisequation (A5)
approximation assumes that the components of shear tensor are small or, similarly, that the relative'

ij
(Kaiser 1992),

deÑection between the neighboring rays is small compared to the unperturbed separation. This is the so-called weak lensing
approximation.

The shear tensor can be diagonalized and decomposed into its trace and ellipticity (or polarization)2i \ '11] '22given byp \ p1] ip2
p1\ '11[ '22 ; p2\ 2'12 . (A6)

While trace 2i magniÐes (or demagniÐes) the images of galaxies, ellipticity p stretches the images and can be observed by
averaging over a sufficient number of galaxies so that the noise caused by the intrinsic ellipticity of galaxies becomes smaller
than the signal. The simplest average is the one within a circular window of radius h, which can be written in Fourier space as

p6 (h) \ 2
nh2

P
0

h
d2h@

P
0

s0
g(s)ds

P
d3keiksseirkM Õ h{k

M
2 b/(k) . (A7)

We decomposed the wavevector into the radial component and the two-dimensional transverse component with theks k
Mamplitude We introduced the variables where is the azimuthal angle of The integral over d2h@ can bek

M
. b \ exp (2i/

k
), /

k
k
M
.

readily performed to give

p6 (h) \ 2
P
0

s0
g(s)ds

P
d3keikssk

M
2 b/(k)W2(kM

rh) , (A8)

where We may now employ the small angle approximation which is valid in the limit whereW2(x) \ 2J1(x)/x. (Limber 1954),
the radial window function is broad compared to the typical wavelength that contributes to the integral. In this limit only the
modes perpendicular to the radial direction will contribute to the integral, all the others being suppressed because of
cancellation of positive and negative Ñuctuations along the line of sight. This allows one to put With this approx-k

M
B k.

imation one obtains for rms ellipticity amplitude p6 2\ p6 p6 * :

Sp6 2(h)T \ 4
PP

d3k1 d3k2
P
0

s0P
0

s0
ds1 ds2 ei(ks1s1`ks2s2)W2(k1 r1h)W2(k2 r2 h)k12 k22S/(k1)/(k2)T . (A9)

Ensemble average can be expressed in terms of the power spectrum of potential or densityPÕ(k) Pd(k),

S/(k1)/(k2)T \ PÕ(k1, a)dD(k1] k2) \
9
4
A)

m
a
B2AH0

k
B4

Pd(k1, a)dD(k1] k2) , (A10)

where power spectrum and expansion factor a depend on time. Integrating over the Dirac function and over thePd(k, a) dDradial component of the wavevector, we Ðnally obtain which gives the rms amplitude of polarization. The sameequation (3),
expression can also be used for rms amplitude of magniÐcation The rms amplitude for each of the two ellipticity2i6 .
components is simply 1/(2)1@2 of the total.

Because skewness of ellipticity vanishes for symmetry reasons we will use skewness of local convergence as an estimate of
the non-Gaussian nature of ellipticity distribution. Calculating it proceeds along the same lines as for the variance

It is deÐned as an ensemble average of the third moment of the mean magniÐcation :(Bernardeau 1995).

Si6 3(h)T \
TCP

0

s0
ds
P

d3keikssg(s)W2(kM
rh)k2/(k)

D3U
. (A11)

In linear theory the three-point correlation function vanishes, so one needs to go beyond the linear approximation to obtain a
nonvanishing value. In second-order perturbation theory the density Ðeld is given by

d(2)(k) \
P

d3k1 d3k2 d(1)(k1)d(1)(k2)dD(k1] k2[ k)F(k1, k2) ,

F(k1, k2)\
C5
7

] k1 Æ k2
k12

] 2
7

(k1 Æ k2)2
k12 k22

D
. (A12)
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Note that the time dependence is all in the growth factors of d(k), which is calculated using linear theory (neglecting the
extremely weak dependence of on ) ; see et al. Ensemble averaging of skewness gives six identicalF(k1, k2) Bouchet 1992).
terms, which after integrating over the radial wavevectors leads to the following expression :

Si6 3(h)T \ 81n2h~4H06
P
0

s0
g3D4)3a~3r~4 ds

P
d2l2 d2l2W2(l1)W2(l2)W2( o l1] l2 o )Pd(l1/rh)Pd(l2/rh)F(l1, l2) . (A13)

The integrals can be further simpliÐed using similar manipulations as in which leads to the followingBernardeau (1995),
expression :

Si6 3(h)T \ 322n4h~4H06
P
0

s0
g3D4

A)
a
B3

r~4 ds
P

P
A l
rh
B
W 22(l)l dl

C6
7
P

P
A l
rh
B
W 22(l)l dl ] 1

2
P

P
A l
rh
B
W2(l)W 2@ (l)l2 dl

D
(A14)

(see also et al. This expression was used in to evaluate the importance of nonlinear evolution on theBernardeau 1996). ° 4
distribution function of polarization.

Several approximations have been employed in obtaining the result above, which limit its validity. Second-order pertur-
bation theory results are only valid in the domain where density perturbations are not much larger than unity, so on very
small scales a more involved calculation would be needed. However, these corrections are typically not more than a factor of
2. Because our purpose is to estimate at which scale the non-Gaussian e†ects become important, second-order perturbation
theory suffices. Another approximation is the use of small angle approximation, which leads to corrections on angular scales
above 1¡ In the regime of main interest for us, which is between 1@È1¡, this is not an important correction.(Bernardeau 1995).
Finally, neglects the deviation of the photon trajectory from the unperturbed path, which also contributes atequation (A14)
the second order. This correction is less important than the main term used in and can be neglectedequation (A14)

et al.(Bernardeau 1996).
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